Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	1/26
Document No.		Issue date	2020/11/24	Revision	01

Tentative Product Specification

To:

Product Name: M123AWF4 R0

Document Issue Date: 2020/11/24

Customer	InfoVision Optoelectronics
SIGNATURE	SIGNATURE
	REVIEWED BY CQM
	PREPARED BY FAE
Please return 1 copy for your confirmation	
with your signature and comments.	

Note : 1. Please contact InfoVision Company before designing your product based on this product.
 2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein.

FQ-7-30-0-009-03D

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	2/26
Document No.		Issue date	2020/11/24	Revision	01

Revision	Date	Page	Revised Content/Summary	Remark
00	2020/11/24		First issued.	

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	3/26
Document No.		Issue date	2020/11/24	Revision	01

CONTENTS

1.0	GENERAL DESCRIPTIONS	4
2.0	ABSOLUTE MAXIMUM RATINGS	6
3.0	OPTICAL CHARACTERISTICS	7
4.0	ELECTRICAL CHARACTERISTICS	.10
5.0	MECHANICAL CHARACTERISTICS	20
6.0	RELIABILITY CONDITIONS	22
7.0	PACKAGE SPECIFICATION	23
8.0	LOT MARK	. 24
9.0	GENERAL PRECAUTION	. 25

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	4/26
Document No.		Issue date	2020/11/24	Revision	01

1.0 General Descriptions

1.1 Introduction

The M123AWF4 R0 is a Color Active Matrix Liquid Crystal Display with a back light system. The matrix uses a-Si Thin Film Transistor as a switching device. This TFT LCD has a 12.3 inch diagonally measured active display area with FHD resolution (1,920 horizontal by 720 vertical pixels array).

1.2 Features

- Supported FHD Resolution
- LVDS Interface
- Wide View Angle
- Compatible with RoHS Standard

1.3 Product Summary

Items	Specifications	Unit
Screen Diagonal	12.3	inch
Active Area (H x V)	292.032 x 109.512	mm
Number of Pixels (H x V)	1,920 x 720	-
Pixel Pitch (H x V)	0.1521 x 0.1521	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally Black	-
White Luminance	(1000) (Typ.)	cd /m ²
Contrast Ratio	(1000)(Typ.)	-
Response Time	(30) (Max.)@25ć	ms
Input Voltage	(3.3) (Typ.)	V
Power Consumption	(14.48) (Max.) @ Mosaic, FV=60Hz	W
Weight	(380) (Max.)	g
Outline Dimension (H x V x D) With PCBA	(299.032)(Typ.) x (123.012)(Typ.) x (8.023) (Max.)	mm
Electrical Interface (Logic)	LVDS	-
Support Color	16.7 M	-
NTSC	(75%)(Typ.)	%
Optimum Viewing Direction	All O'clock	-
Surface Treatment	HC/3H	-

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	5/26
Document No.		Issue date	2020/11/24	Revision	01

1.4 Functional Block Diagram

Figure 1 shows the functional block diagram of the LCD module.

1.5 Pixel Mapping

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	6/26
Document No.		Issue date	2020/11/24	Revision	01

2.0 Absolute Maximum Ratings

Table 1 Electrical & Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Logic Supply Voltage	V _{cc}	(-0.3)	(4.0)	V	
Logic Input Signal Voltage	V _{Signal}	(-0.3)	(2.4)	V	(1),(2),
Operating Temperature	Tgs	(-30)	(85)	ć	(3),(4)
Storage Temperature	Ta	(-40)	(90)	ć	

Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.

Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25ć, Humidity: 55± 10%RH.

Note (3) Unpredictable results may occur when it was used in extreme conditions. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature. All the display fineness should be inspected under normal conditions.

Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 57.8ć, and no condensation of water. Besides, protect the module from static electricity.

Figure 3 Absolute Ratings of Environment of the LCD Module

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	7/26
Document No.		Issue date	2020/11/24	Revision	01

3.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes.

Item	Conditions		Min.	Тур.	Max.	Unit	Note	
itom		0		-	max.	Unit		
	Horizontal	θ	(80)	(85)	-			
Viewing Angle		θ "-	(80)	(85)	-	degree	(1),(2),(3),(4)(8)	
∧CR°10∨	Vertical	θ _{y+}	(80)	(85)	-			
	Vertioar	θ _{y-}	(80)	(85)	-			
Contrast Ratio	Center		(800)	(1000)	-	-	(1),(2),(4),(8) θx=θy=0°	
Response Time T=25ć			-	∧TBD∨	(30)	ms		
Response Time T=-20ć	Rising + Falling		-	∧TBD∨	(250)	ms	(1),(2),(5),(8) θx=θy=0°	
Response Time T=-30ć			-	∧TBD∨	(450)	ms		
	Red x			(0.621)		-		
	Red y			(0.313)		-		
	Green x			(0.304)		-		
Color	Green y	Blue x Blue y White x		(0.650)	Тур.	-	(1),(2),(3),(8)	
Chromaticity	Blue x			(0.157)	-	-		
(CIE1931)				(0.054)	(+0.04)	-	θx=θy=0°	
				(0.300)		-		
	White y			(0.320)		-		
NTSC	-		(70)	(75)	-	%	(1),(2),(3),(8) θx=θy=0°	
White Luminance	Center Point		(850)	(1000)	-	cd/m ²	(1),(2),(6),(8) θx=θy=0°	
Luminance	9 Points@whi	te	(70)	(80)	-	0.1	(1),(2),(7),(8)	
Uniformity	9 Points@bla	ck	(50)	(60)	-	%	θx=θy=0°	

Table 2 Optical Characteristics

Note (1) Measurement Setup:

The LCD module should be stabilized at given ambient temperature (25ć) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room.

InfoVision Optoelectronics (Kunshan) Co.,LTD.Document TitleM123AWF4 R0 Tentative Product SpecificationPage No.8/26Document No.Issue date2020/11/24Revision01

Note (2) The LED input parameter setting as:

I_{LED}:(270) mA

Note (3) Definition of Viewing Angle

Figure 5 Definition of Viewing Angle

Note (4) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression:

Contrast Ratio (CR) = The luminance of White pattern/ The luminance of Black pattern

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	9/26
Document No.		Issue date	2020/11/24	Revision	01

Note (5) Definition of Response Time (T_R, T_F)

Figure 6 Definition of Response Time

Note (6) Definition of Luminance of White

Measure the luminance of White pattern (Ref.: Active Area)

Display Luminance=L1 δ center point ϵ

H-Active Area Width, V-Active Area Height, L-Luminance

Note (7) Definition of Luminance Uniformity (Ref.: Active Area)

Measure the luminance of White pattern at X points.

Luminance Uniformity= Min.(L1, L2, ... L9) / Max.(L1, L2, ... L9)

H-Active Area Width, V-Active Area Height, L-Luminance

Figure 7 Measurement Locations of 9 Points

Note (8) All optical data are based on IVO given system & nominal parameter & testing machine in this document.

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	10/26
Document No.		Issue date	2020/11/24	Revision	01

4.0 Electrical Characteristics

4.1 Interface Connector

Table 3	Signal	Connector	Туре
---------	--------	-----------	------

Item	Description
Manufacturer / Type	BJD-101049-205050

Table 4 Signal Connector Pin Assignment

Pin No.	Symbol	Description	Remarks
1	GND	Digital ground	-
2	BIST	LCD Panel Self Test Enable, When it is not used, connecting to GND is recommended, don't floating	Active as(3.3)V
3	VCC	Digital Power/Vin =3.3V	-
4	VCC	Digital Power/Vin =3.3V	-
5	GND	Power ground	-
6	GND	Power ground	-
7	OTP	Serial interface OTP power	(8.6)V
8	NC	No connection	-
9	GND	Power ground	-
10	ORXIN0-	Negative LVDS differential data input(Odd data)	-
11	ORXIN0+	Positive LVDS differential data input(Odd data)	-
12	ORXIN1-	Negative LVDS differential data input(Odd data)	-
13	ORXIN1+	Positive LVDS differential data input(Odd data)	-
14	ORXIN2-	Negative LVDS differential data input(Odd data)	-
15	ORXIN2+	Positive LVDS differential data input(Odd data)	-
16	ORXCLKIN-	Negative LVDS differential data input(Odd clock)	-
17	ORXCLKIN+	Positive LVDS differential data input(Odd clock)	-
18	ORXIN3-	Negative LVDS differential data input(Odd data)	-
19	ORXIN3+	Positive LVDS differential data input(Odd data)	-

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	11/26
Document No.		Issue date	2020/11/24	Revision	01

20	ERXIN0-	Negative LVDS differential data input(Even data)	-
21	ERXIN0+	Positive LVDS differential data input(Even data)	-
22	ERXIN1-	Negative LVDS differential data input(Even data)	-
23	ERXIN1+	Positive LVDS differential data input(Even data)	-
24	ERXIN2-	Negative LVDS differential data input(Even data)	-
25	ERXIN2+	Positive LVDS differential data input(Even data)	-
26	ERXCLKIN-	Negative LVDS differential data input(Even clock)	-
27	ERXCLKIN+	Positive LVDS differential data input(Even clock)	-
28	ERXIN3-	Negative LVDS differential data input(Even data)	-
29	ERXIN3+	Positive LVDS differential data input(Even data)	-
30	GND	Power ground	-
31	FAULT	FAULT signal output(normal=H,abnormal=L)	-
32	RESET	Global reset pin,active High.	-
33	STBYB	Standby mode, active High.	-
34	CSB	Serial interface chip enable	
35	SCL	Serial interface clock input	
36	SDAI	Serial interface data input	(1)
37	SDAO	Serial interface data output.	
38	GND	Power ground	-
39	GND	Power ground	-
40	NC	No connection	-
41	LEDA	LED power(Anode)	
42	LEDA	LED power(Anode)	(36.3)V
43	LEDA	LED power(Anode)	()-
44	NC	No connection	_
45	LEDK	Cathode1	(90)mA

Document Title	M123AWF4 R0 Tentative Product Specification		Page No.	12/26		
Document No.		Issue date	2020/11/24	Revision	01	

46	LEDK	Cathode2	(90)mA
47	LEDK	Cathode3	(90)mA
48	LEDK	Cathode4	(90)mA
49	NTC_A	NTC_Anode	-
50	NTC_K	NTC_Cathode	-

Note(1).Pin 34 to 37 only for IVO use, is NC on the client.

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	13/26
Document No.		Issue date	2020/11/24	Revision	01

4.2 Signal Electrical Characteristics

4.2.1 Signal Electrical Characteristics for LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.

Table 5 LVDS Receiver Electrical Characteris	tics
--	------

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	Vth	-	-	(+100)	mV	V _{CM} =+1.2V
Differential Input Low Threshold	Vtl	(-100)	-	-	mV	V _{CM} =+1.2V
Magnitude Differential Input	V _{ID}	(150)	-	(600)	mV	-
LVDS Input Voltage	VINLV	0.7	-	1.7	V	-
Common Mode Voltage	V _{CM}	(1)	(1.2)	(1.7- VID /2)	V	-

Note (1) Input signals shall be low or Hi- resistance state when VCC is off.

Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

Document Title	M123AWF4 R0 Tentativ	Page No.	14/26		
Document No.		Issue date	2020/11/24	Revision	01

Figure 10 Figure 10 Data Mapping

4.2.2 LVDS Receiver Internal Circuit

Figure 11 shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

NO Inf	oVision Optoelectro	nics (Ku	nshan) Co	.,LTD.	
Document Title	M123AWF4 R0 Tentati	M123AWF4 R0 Tentative Product Specification			15/26
Document No.		Issue date	2020/11/24	Revision	01

Figure 11 LVDS Receiver Internal Circuit

4.3 Interface Timings

Table 6 Interface Timings							
Parameter	Symbol	Min.	Тур.	Max.	Unit		
LVDS Clock Frequency	Fclk	-	(88.6)	-	MHz		
H Total Time	HT	(1,975)	(2020)	(2880)	Clocks		
H Active Time	HA		(1920)		Clocks		
V Total Time	VT	(728)	(731)	(1080)	Lines		
V Active Time	VA		(720)		Lines		
Frame Rate	FV	(55)	(60)	(65)	Hz		

Document Title	M123AWF4 R0 Tentativ	M123AWF4 R0 Tentative Product Specification			
Document No.		Issue date	2020/11/24	Revision	01

4.4 Input Power Specifications

Input power specifications are as follows.

Table 7 Input Power Specifications

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
System Power Supply							
Power Supply In	put Voltage	V_{CC}	(3.0)	(3.3)	(3.6)	V	(1),(2)
Power Supply Input Current	Mosaic	Icc	-	-	(460)	mA	
PCC Power Consumption	Mosaic	P_{CC}	-		(1.38)	W	(1),(4)
Logic	High level voltage	V _{IH}	(3.0)	-	(3.6)	V	(4)
Inpu t Signal	Low level voltage	V _{IL}	(0)	-	0.4	V	(1)
Logic	High level voltage	V _{OH}	(3.0)	-	(3.6)	V	(1)
Outpu t Signal	Low level voltage	V_{OL}	(0)	-	(0.5)	V	(1)
Rush Current		I _{Rush}	-	-	(1500)	mA	(1),(5)
Allowable Logic/ Drive Ripple Volt	age	$V_{\text{VCC-RP}}$	-	-	(200)	mV	(1),(3)
LED Power Sup LED Input Voltag		V _{LED}	-	-	(36.3)	V	(1),(2),(10)
LED Power Con	sumption	P _{LED}	-	-	(13.1)	W	(1),(6),(10)
LED Forward Vo	ltage	VF	-	-	(3.3)	V	(1),(2)
LED Forward Cu	irrent	l _F	-	(90)	-	mA	('),(∠)
LED Life Time		LT	(30,000)	-	-	Hours	(1),(9)

Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25ć, Humidity: 55± 10%RH.

Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.

Note (3) The specified V_{CC} current and power consumption are measured under the V_{CC} = 3.3 V, FV= 60 Hz condition and White pattern.

Note (4) The figures below is the measuring condition of V_{CC} . Rush current can be measured when All rights strictly reserved reproduction or issue to third parties in any form whatever is not permitted without written authority from the proprietor.

Document Title	M123AWF4 R0 Tentativ	M123AWF4 R0 Tentative Product Specification			
Document No.		Issue date	2020/11/24	Revision	01

T_{RUSH} is 0.5 ms.

Figure 12 V_{cc} Rising Time

Note (5) Although acceptable range as defined, the dimming ratio is not effective at all conditions. The PWM frequency should be fixed and stable for more consistent luminance control at any specific level desired.

Note (6) The life time is determined as the sum of the lighting time till the luminance of LCD at the typical LED current reducing to 50% of the minimum value under normal operating condition.

Note (7) Definition of VLED and PLED

 $V_{\text{LED}} = V_{\text{F}} \times 11, \ I_{\text{LED}} = I_{\text{F}} \times 4, \ \text{PLED} = V_{\text{LED}} \times I_{\text{LED}}$

Pin9 NTC+ O Pin10 NTC-

Note (8) The allowable forward current of LED vary with environmental temperature.

InfoVision Optoelectronics (Kunshan) Co.,LTD.						
Document Title	M123AWF4 R0 Tentati	M123AWF4 R0 Tentative Product Specification				
Document No.		Issue date 20		Revision	01	

Figure 13 Backlight Current De-rating Curve

Document Title	M123AWF4 R0 Tentativ	Page No.	19/26		
Document No.		Issue date	2020/11/24	Revision	01

4.5 Power ON/OFF Sequence

1. Interface signals are also shown in the chart. Signals from any system shall be Hiresistance state or low level when VCC voltage is off.

2. When system first start up, should keep the VCC high time longer than 200ms, otherwise may cause image sticking when VCC drop off.

Parameter	Symbol	Min.	Тур.	Max.	Unit
VCC Rising Time	T1	ms	(0.5)		(10)
VCC to LVDS	T2	ms	(0)		(50)
VCC to RSTB	Т3	us	(10)		
RSTB to STBYB pull H	T4	ms	(36)		
LVDS to BL power On	T5	ms	(200)		
BL power off to LVDS disable	Т8	ms	(200)		
STBYB pull L to RSTB	T7	ms	(133)		
LVDS Disable to VCC Power off	Т6	ms	(0)		(50)
VCC Fall Time	Т9	ms	(0.5)		(30)
VCC Power off	T10	ms	(500)		

Document Title	M123AWF4 R0 Tentati	Page No.	20/26		
Document No.		Issue date	2020/11/24	Revision	01

5.0 Mechanical Characteristics

5.1 Outline Drawing

Notes-Unmarked tolerancef0.5

Figure 16 Reference Outline Drawing (Back Side)

Document Title	M123AWF4 R0 Tentati	M123AWF4 R0 Tentative Product Specification			
Document No.		Issue date	2020/11/24	Revision	01

5.2 Dimension Specifications

Table 9 Module Dimension Specifications

Item		Min.	Тур.	Max.	Unit
Width		(298.532)	(299.032)	(299.532)	mm
Height		(122.512)	(123.012)	(123.512)	mm
Thickness	With PCBA	-	-	(8.023)	mm
Weight		-	(348.5)	(380)	g

Note-Outline dimension measure instrument: Vernier Caliper.

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	22/26
Document No.		Issue date	2020/11/24	Revision	01

6.0 Reliability Conditions

Table 10 Reliability Condition						
Item	Package	Test Conditions		Note		
High Temperature/High Humidity Operating Test	Module	T _{gs} =60ć, 90%RH, 500 hours		(1),(2),(3),(4),		
High Temperature Operating Test	Module	T _{gs} =85ć,	500 hours	(7)		
Low Temperature Operating Test	Module	T _a =-30ć	, 500 hours			
High Temperature Storage Test	Module	T _a =90ć,	500 hours	(1),(3),(4)		
Low Temperature Storage Test	Module	T _a =-40ć	, 500 hours			
Check New exercting Test	Madula	100G,6ms,sin				
Shock Non-operating Test	Module	wave,±X	YZ×3times,Total 18times			
		half-sine				
		Frequence				
		Stroke: 1	(1),(3),(5)			
Vibration Non-operating Test	Module	Sweep: 2				
		Cycle : 1				
		2 hrs for				
		hours for	Y direction			
	Madula	Contact	±8KV, 150 pF,R=330Ω	(1) (2) (6)		
ESD Test Operating	Module	Air	±15KV, 150pF, R=330Ω	(1),(2),(6)		

Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the module after reliability test.

Note (2) The setting of electrical parameters should follow the typical value before reliability test.

Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity.

Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25ć, Humidity: 55 \pm 10%RH. T_a= Ambient Temperature, T_{gs}= Glass Surface Temperature.

Note (5) The module should be fixed firmly in order to avoid twisting and bending.

Note (6) It could be regarded as pass, when the module recovers from function fault caused by ESD after resetting.

Note(7) LED forward current should follow the current of LED vary with environmental temperature.

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	23/26
Document No.		Issue date	2020/11/24	Revision	01

7.0 Package Specification

Figure 17 Packing Method

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	24/26
Document No.		Issue date	2020/11/24	Revision	01

8.0 Lot Mark

TBD

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	25/26
Document No.		Issue date	2020/11/24	Revision	01

9.0 General Precaution

9.1 Using Restriction

This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic.

9.2 Operation Precaution

(1) The LCD product should be operated under normal conditions.

Normal conditions are defined as below:

Temperature: 25ć

Humidity: 55±10%

Display pattern: continually changing pattern (Not stationary)

(2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.)

(3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the module. Besides, smear or spot will remain after condensate water evaporating.

(4) If the absolute maximum rating value was exceeded, it may damage the module.

(5) Do not adjust the variable resistor located on the module.

- (6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference.
- (7) Image sticking may occur when the module displayed the same pattern for long time.

(8) Do not connect or disconnect the module in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence"

(9) Ultra-violet ray filter is necessary for outdoor operation.

9.3 Mounting Precaution

(1) All the operators should be electrically grounded and with lon-blown equipment turning on when mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel

clean during the incoming inspection and the process of assembly.

(2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not desirable.

(3) The case on which a module is mounted should have sufficient strength so that external force is not transmitted to the module directly.

(4) It is obvious that you should adopt radiation structure to satisfy the temperature specification.

(5) So as to acquire higher luminance, the cable of the power supply should be connected directly with a minimize length.

(6) It should be attached to the system tightly by using all holes for mounting, when the module is

Document Title	M123AWF4 R0 Tentative Product Specification			Page No.	26/26
Document No.		Issue date	2020/11/24	Revision	01

assembled. Be careful not to apply uneven force to the module especially to the PCB on the back.

(7) A transparent protective film needs to be attached to the surface of the module.

(8) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In addition, don't touch the pin exposed with bare hands directly.

(9) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty.

(10) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color.

(11)Clean the panel gently with absorbent cotton or soft cloth when it is dirty. Ethanol(C_2H_5OH) is allowed to be used. Ketone (ex. Acetone), Toluene, Ethyl acid, Methyl chloride, etc are not allowed to be used for cleaning the panel, which might react with the polarizer to cause permanent damage. (12) Do not disassemble or modify the module. It may damage sensitive parts in the LCD module, and cause scratches or dust remains. IVO does not warrant the module, if you disassemble or modify the module.

9.4 Handling Precaution

(1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with lon-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area.

(2) The protection film is attached to the polarizer with a small amount of glue. When the module with protection film attached is stored for a long time, a little glue may remain after peeling.

(3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly.

9.5 Storage Precaution

When storing modules as spares for long time, the following precautions must be executed.

(1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between $5\acute{c}$ and $35\acute{c}$ at normal humidity.

(2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

(3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality.

9.6 Others

When disposing LCD module, obey the local environmental regulations.